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Stochastic optimal control theory

Control theory: how to act (now) to optimized future rewards

Idea: Use control theory to model intelligent (animal, human, robot, computer)
behavior
- cooking together with your home robot
- anticipating human machine interface
- controlling when to learn

Noise and uncertainty plays dominant role:
- limited sensors
- at best probabilistic description of likely future events
- intractable

Tractable approaches are too simple:
- linear quadratic case
- deterministic case
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Stochastic optimal control theory

Optimal solution is noise dependent
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Outline

Introduction to control theory and review of path integral control
- delayed choice

- cooperating agents

Introduction to KL control theory
- path integrals as a special case

- opponent modeling, ficticious play, variational approximation

- stag hunt game

Bert Kappen Mariehamn May 2010 3



Discrete time control

Consider the control of a discrete time deterministic dynamical system:

xt+1 = xt + f(t, xt, ut), t = 0, 1, . . . , T − 1

xt describes the state and ut specifies the control or action at time t.

Given xt=0 = x0 and u0:T−1 = u0, u1, . . . , uT − 1, we can compute x1:T .

Define a cost for each sequence of controls:

C(x0, u0:T−1) = φ(xT ) +
T−1
∑

t=0

R(t, xt, ut)

The problem of optimal control is to find the sequence u0:T−1 that minimizes
C(x0, u0:T−1).
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Dynamic programming

Find the minimal cost path from A to J. u is the choice of path and R(u, t) is
path cost

C(J) = 0, C(H) = 3, C(I) = 4

C(F ) = min(6 + C(H), 3 + C(I))
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Discrete time control

One can recursively compute the solution by defining the optimal cost-to-go

J(t, xt) = min
ut:T−1

(

φ(xT ) +
T−1
∑

s=t

R(s, xs, us)

)

= min
ut

(R(t, xt, ut) + J(t + 1, xt + f(t, xt, ut)))

This is called the Bellman Equation.

Computes u(x, t) for all intermediate x, t backwards in time.

The optimal control at t = 0 is u(x0, 0).
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Continuous stochastic case

dx = f(x, u, t)dt + dξ,
〈

dξdξT
〉

= νdt

C =

〈

φ(x(T )) +

∫ T

0

dtR(t, x(t), u(t))

〉

−∂tJ(t, x) = min
u

(

R(t, x, u) + f(x, u, t)∂xJ(x, t) +
1

2
Tr(ν∂2

xJ(x, t))

)

solved backwards in time with boundary condition J(x, T ) = φ(x).

This is called the Hamilton-Jacobi-Bellman Equation.
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Computes the anticipated potential J(t, x) from the future potential φ(x).
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The path integral solution to stochastic optimal control

Consider additive linear control and quadratic control cost:

dx = (f(x, t) + u)dt + dξ

R(x, u, t) = V (x, t) +
1

2
uTRu

with with
〈

dξdξT
〉

= νdt and λ = Rν.

With R = 1:

−∂tJ = min
u

(

1

2
u2 + V + (f + u)∂xJ +

1

2
ν∂2

xJ

)

= −
1

2
(∂xJ)2 + V + f∂xJ +

1

2
ν∂2

xJ

with boundary condition J(T, x) = φ(x) and u = −∂xJ .
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The logarithmic transformation

J(x, t) = −ν log Ψ(x, t)

The HJB equation becomes linear in Ψ:

∂tΨ = −HΨ, H = −
V

ν
+ f∂x +

1

2
ν∂2

x

with boundary condition Ψ(T, x) = exp(−φ(x)/ν).
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Reversing time

Let ρ(y, τ |x, t) describe a diffusion process defined by the Fokker-Planck equation

∂τρ = H†ρ

with ρ(y, t|x, t) = δ(y − x).

It can be shown that

Ψ(x, t) =

∫

dyρ(y, T |x, t) exp(−φ(y)/ν)

ρ(y, T |x, t) =

∫

[dx]yx exp (−Spath/ν)

J(x, t) = −ν log

∫

[dx]x exp

(

−
1

ν
S(x(t → tf))

)

S(x(t → tf)) = φ(x(tf)) +

∫

dτ
1

2
(ẋ(τ) − f(x(τ), τ))2 + V (x(τ), τ)

where the path integral
∫

[dx]x is over all trajectories starting at x.
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The path integral formulation

J(x, t) = −ν log

∫

[dx]x exp

(

−
1

ν
S(x(t → tf))

)

The path integral is a log partition sum and therefore can be interpreted as a free
energy. S is the energy of a path and ν the temperature:
1) noise dependent solution (high and low temperature, phase transition)
2) use standard (stat mech) methods for approximate computation
- MC sampling
- variational, BP,...
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Delayed choice

xt+dt = xt + utdt + dξt

〈

ξ2
t

〉

= νdt

V = 0 and end cost φ encodes two targets at t = T .

J(x, t = 0) =
1

T

(

1

2
x2 − νT log 2 cosh

x

νT

)

u(x) =
1

T

(

tanh
x

νT
− x
)
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Delayed choice
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Prediction: when the future is uncertain, delay your decisions.
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Firemen extinguishing fires
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Firemen extinguishing fires
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KL control theory

A different view and a possible generalization.
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Approximate inference

Write p(x) = 1
Z exp(−E(x)).

p is given by minimizing the

KL(p|| exp(−E)) =
∑

x

p(x) log
p(x)

exp(−E(x))

wrt p subject to normalization constraint.

Approximate p(x) ⇔ approximate KL or restrict minimization
- variational
- BP, CVM
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KL control theory

x denotes state of the agent and x1:T is a path through state space from time
t = 1 to T .

q(x1:T |x0) denotes a probability distribution over possible future trajectories given
that the agent at time t = 0 is is state x0, with

q(x1:T |x0) =

T
∏

t=0

q(xt+1|xt)

q(xt+1|xt) implements the allowed moves.

R(x1:T ) =
∑T

t=1 R(xt) is the total reward when following path x1:T .

The KL control problem is to find the probability distribution p(x1:T |x0) that
minimizes

C(p|x0) =
∑

x1:T

p(x1:T |x0)

(

log
p(x1:T |x0)

q(x1:T |x0)
− R(x1:T )

)

= KL(p||q) − 〈R〉p
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KL control theory

0 0.5 1 1.5 2
−10

−5

0

5

10

(a) Sample paths under q

0 0.5 1 1.5 2

−6

−4

−2

0

2

4

6

8

(b) Sample paths under p

Bert Kappen Mariehamn May 2010 20



KL control theory

C(p|x0) = KL(p||q) − 〈R〉p

The optimal solution for p is found by minimizing C wrt p. The solution and the
optimal control cost are

p∗(x1:T |x0) =
1

Z(x0)
q(x1:T |x0) exp (R(x1:T ))

C(p∗|x0) = − log Z(x0)

Z(x0) =
∑

x1:T

q(x1:T |x0) exp (R(x1:T ))

NB: Z(x0) is an integral over paths.

Intractable but standard inference problem.
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KL control theory

The optimal control at time t = 0 is given by

p(x1|x0) =
∑

x2:T

p(x1:T |x0) ∝ q(x1|x0) exp(R(x1))β1(x1)

with βt(x) the backward messages.

xxx

....

x0 T−2 T−1 T

βT (xT ) = 1

βt−1(xt−1) =
∑

xt

q(xt|xt−1) exp(R(xt))βt(xt)
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Continuous case

Consider again

xt+dt = xt + f(xt, t)dt + utdt + dξt

In terms of the KL control formulation

p(xt+dt|xt, ut) = N (xt+dt|xt + f(xt, t)dt + utdt, ν)

q(xt+dt|xt) = N (xt+dt|xt + f(x, t)dt, ν)

C(p|x0) = KL(p|q) +

〈

φ(x(T ) +

∫

dtV (x(t))

〉

=
∑

xdt:T

p(xdt:T |x
0)

T
∑

t=dt

1

2
uT

t ν−1ut +

〈

φ(x(T ) +

∫

dtV (x(t))

〉

Bert Kappen Mariehamn May 2010 23



Agents: a distributed approach

In the case of agents, the uncontrolled dynamics q factorizes over the agents:

q(x1
1:T , x2

1:T , . . . |x1
0, x

2
0, . . .) = q1(x1

1:T |x
1
0)q

2(x2
1:T |x

2
0) . . .

However, the reward R is a function of the states of all agents and can be different
for each agent.

Opponent modeling: each agent assumes a model according to which the other
agents behave.

C1(p1|x1
0, x

2
0) = KL(p1||q1) −

〈

R1
〉

p1,p̂2

p1(x1
1:T |x

1
0, x

2
0) =

1

Z1(x0)
q1(x1

1:T |x
1
0) exp

(

〈

R1
〉

p̂2

)

〈

R1
〉

p̂2 =
∑

x2
1:T

p̂2(x2
1:T |x

1
0, x

2
0)R(x1

1:T , x2
1:T ) =

T
∑

t=1

∑

x2
t

p̂2(x2
t |x

1
0, x

2
0)R

1(x1
t , x

2
t )
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Two agents cooperative games

How do we choose the opponent model?

When the problem is symmetric:
- agents are identical (same states, same q)
- the reward is symmetric R1(x1, x2) = R2(x2, x1)
one can use a recursive argument leading to an infinite sequence of nested beliefs

Agent 1:
- assumes an initial opponent model p2

0(x
2
1:T |x

1
0, x

2
0)

- computes its optimal behaviour p1(x1
1:T |x

1
0, x

2
0)

- reasons, that agent 2 could have done the same.
- assumes new opponent model p2

1(x
2
1:T |x

1
0, x

2
0) = p1(x2

1:T |x
2
0, x

1
0)

- computes its optimal behaviour p1 against p2
1

- . . .

Bert Kappen Mariehamn May 2010 25



Two agents cooperative games

C1(pk+1|x
1
0, x

2
0) = KL(pk+1||q) −

〈

R1
〉

pk+1,pk

pk+1(x
1
1:T |x

1
0, x

2
0) =

1

Z
q(x1

1:T |x
1
0) exp

(

〈

R1
〉

pk

)

The infinite recursion leads to a fixed point equation with solution
p∞(x1

1:T |x
1
0, x

2
0) = limk→∞ pk+1(x

1
1:T |x

1
0, x

2
0), where both agents play the same.
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Stag hunt game

Stag Hare
Stag 4,4 1,3
Hare 3,1 3,3

Get a Hare for yourself or a Stag together.

Two Nash equilibria:
if opponent plays Stag, I play Stag
if opponent plays Hare, I play Hare

Model for human and animal cooperation:
- slime molds can stick together to reproduce
- orcas can catch large schools of fish
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Static stag hunt game

x = ±1 denotes Stag or Hare. Reward matrix R(x1, x2):

1 -1
1 4,4 1,3
-1 3,1 3,3

The game is only played once, ie. T = 1.

There is no dependence on the current state, so that q(x1:T |x0) = 1.

We can express pk(x) in terms of its expectation value mk as pk(x) = 1
2(1+mkx).

mk+1 = tanh

(

1

2

∑

x′

(1 + mkx
′) (R(1, x′) − R(−1, x′))

)

= tanh(α + βmk)

α =
1

2
(R(1, 1) + R(1,−1) − R(−1, 1) − R(−1,−1))

β =
1

2
(R(1, 1) − R(1,−1) − R(−1, 1) + R(−1,−1))

Bert Kappen Mariehamn May 2010 28



Static stag hunt game
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mk+1 = tanh(α + βmk) versus mk.

For small β there is a unique solution.
For large β there are two solutions, and dependence on initial conditions.
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Static stag hunt game
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Static stag hunt game

The two Nash equilibria imply β > 0,−β < α < β.
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Stag hunt game has local minima. Other games, such as Prisoners Dilemma, not.
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Static stag hunt game

Thus:
- In many settings of the game there are two solutions m ≈ ±1.
- The solution m ≈ 1 is always better than the solution m ≈ −1.
- The solution that is found depends on the initial assumption about the opponent
- Smaller rewards yield more likely cooperation
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Dynamic stag hunt game

Optimal control is computed by backwards message passing:

C1(pk+1|x
1
0, x

2
0) = KL(pk+1||q) −

〈

R1
〉

pk+1,pk

pk+1(x
1
1:T |x

1
0, x

2
0) =

1

Z
q(x1

1:T |x
1
0) exp

(

〈

R1
〉

pk

)

〈

R1
〉

pk
is the expected future reward of agent 1’s trajectory x1

1:T when agent 2

acts according to pk(x
2
1:T |x

1
0, x

2
0). It can be computed as a prediction:

〈

R1
〉

pk
(x1

1:T ) =
∑

x2
1:T

pk(x
2
1:T |x

1
0, x

2
0)R(x1

1:T , x2
1:T )

=
T
∑

t=1

∑

x2
t

pk(x
2
t |x

1
0, x

2
0)Rt(x

1
t , x

2
t ) =

T
∑

t=1

〈

R1
t

〉

(x1
t )
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Dynamic stag hunt game

Initialize p0(x1:T |x1
0, x

2
0) = q(x1:T |x1

0, x
2
0) a random walk.

For k = 0, 1, 2, . . .
- Predict

〈

R1
t

〉

pk
(x1

t ), t = 1, . . . , T

- Compute pk+1(x
1
1:T |x

1
0, x

2
0)

End
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Dynamic stag hunt game

T = 20, RStag = 0.1, RHare = 0.01, xStag = 12, xHare = 4. Brown=Hare; Blue=Stag
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Discussion and future work

KL/Path integral control theory as a computationally feasible approach to
- agent coordination Firemen: end cost only; approx inference

- games with delayed rewards Stag hunt: ficticious play as a variational approximation

Factorization over agents as variational solution

KL(p|q) − 〈R〉 p(x1
1:T , x2

1:T ) = p1(x
1
1:T )p2(x

2
1:T )

Future:
Repeated games:

- learning opponent behavior based on actual play

- POMDP or dual control setting; learning p or R?
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Discussion and future work

Stochastic control theory predicts phase transition

- Optimal control is qualitatively different for high and low noise

- Delayed choice behavior

- Stat mech description and approximate inference

Robot application

See my webpage for papers www.snn.ru.nl/~bertk
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α/β = −3/5, β = 25, 12.5, 7.5

8 cohorts, 8 subjects per cohort. Each cohort plays one of the three games, 75 times. Subjects are

randomly paired within a cohort.

BSH 2001, Econometrica
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Discrete time control

The algorithm to compute the optimal control u∗
0:T−1, the optimal trajectory x∗

1:T and the optimal

cost is given by

1. Initialization: J(T, x) = φ(x)

2. Backwards: For t = T − 1, . . . , 0 and for all x compute

u
∗
t (x) = arg min

u
{R(t, x, u) + J(t + 1, x + f(t, x, u))}

J(t, x) = R(t, x, u∗
t ) + J(t + 1, x + f(t, x, u∗

t ))

3. Forwards: For t = 0, . . . , T − 1 compute

x∗
t+1 = x∗

t + f(t, x∗
t , u∗

t (x
∗
t ))

NB: the backward computation requires u∗
t (x) for all x.
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Reversing time

Let ρ(y, τ |x, t) describe a diffusion process defined by the Fokker-Planck equation

∂τρ = H
†
ρ (1)

with ρ(y, t|x, t) = δ(y − x).

Define

A(x, t) =

Z

dyρ(y, τ |x, t)Ψ(y, τ).

It is easy to see by using the equations of motions for Ψ and ρ that A(x, t) is independent of τ .

Evaluating A(x, t) for τ = t yields A(x, t) = Ψ(x, t). Evaluating A(x, t) for τ = tf yields

A(x, t) =
R

dyρ(y, tf |x, t)Ψ(y, tf). Thus,

Ψ(x, t) =

Z

dyρ(y, tf |x, t) exp(−φ(y)/ν) (2)
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MC sampling

The diffusion equation

∂τρ = −
V

ν
ρ − ∂y(fρ) +

1

2
ν∂

2
yρ (3)

can be sampled as

dx = f(x, t)dt + dξ

x = x + dx, with probability 1 − V (x, t)dt/ν

xi = †, with probability V (x, t)dt/ν (4)
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MC sampling

We can estimate

Ψ(x, t) =

Z

dyρ(y, tf |x, t) exp(−φ(y)/ν) (5)

by computing N trajectories xi(t → tf), i = 1, . . . , N .

Then, Ψ(x, t) is estimated by

Ψ̂(x, t) =
1

N

X

i∈alive

exp(−φ(xi(tf))/ν) (6)

where ’alive’ denotes the subset of trajectories that do not get killed along the way by the †

operation.
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Experiment
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Results

Low noise High noise
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Conclusions

Stochastic optimal control theory predicts that

- Delayed choice is an optimal strategy

- This behavior is also observed in humans

- Results are preliminary and need further quantification
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